
USB VIDEO SWITCH: IMPLEMENTATION DETAILS 

By 

Ammar Hattab 

Prof. Gabriel Taubin 

Brown University 

Abstract 

   This paper describes the implementation details of a low cost USB video switch device, 

which can combine the video from multiple UVC compliant USB cameras to emulate a real 

UVC webcam gadget want (capturing live video from different video capture source) which 

can be used with one USB cable, and when connected to the PC, it is recognized as a single 

USB Camera of a special type, and could be used in different applications like Skype..etc. 

Introduction  

  There are many applications that require switching between several video sources (or 

combining them), it’s especially important in live broadcasting systems where the 

production switcher is an essential element and also in the video conferencing applications 

[1]. 

   The problem with current video switching systems is the high cost and complexity of the 

used equipment which had limited their usage; in broadcasting industry most vision mixers 

are targeted at the professional market [1]; many of them using giant switchers with 

perhaps over 50 inputs, while in video conferencing there are two kinds of systems: 

dedicated systems which have all the required components packaged into a single piece of 

equipment, and desktop systems which integrates everything into a single PC, and their 

complexity varies from the large group videoconferencing to the individual 

videoconferencing, and in many situations, the application requires a simple and low cost 

video switching solution. 

   USB cameras are now used everywhere which provides the user with a low-cost, 

convenient, and simple connectivity solution with ease of use and installation, with many 

high definition versions already available to a level that is sufficient for many applications, so 

finding a way to switch/combine the video from multiple USB cameras is very useful and has 

many applications. 

 

 

 

 



Embedded Linux Development  

   There are many types of embedded systems with different tools, resources and 

development levels, one important type is the embedded Linux-based environment which is 

already running in many consumer electronic devices (ex: Android Phones). 

   The general established practice for working with embedded Linux devices is to develop 

and build software on a ‘host’ PC system (on which all of the general tools are available) and 

then copy the results to the BeagleBoard using its network connection, or by directly using 

its microSD card. 

   The kernel must be compiled for whatever target architecture it will run on, and generally, 

its compiled using a cross-compiler – a special version of GCC that is able to run on a fast 

desktop PC, creating binary code that will run on an ARM processor instead of the PC 

processor. 

   Linux kernel functionality could be extended using kernel modules (instead of having all 

functionality in one big kernel image); one type of module is the device driver, which allows 

the kernel to access hardware connected to the system [2]. 

   We should distinguish between two types of drivers: Device drivers and Gadget drivers, 

device drivers communicates and manage the functionality of devices connected to Linux 

system (“host” role), and Gadget driver allows the Linux system to act in the "slave" role. 

   One important category of devices that could be connected to computer are USB devices, 

USB was designed to standardize the connection of peripherals to personal computers, and 

there are a wide range of USB devices intended for a wide range of purposes. There are USB 

device driver (host drivers) and also USB gadget driver (slave drivers). 

   The functionality of USB devices is defined by class codes, communicated to the USB host 

to affect the loading of suitable software driver modules for each connected device. This 

provides for adaptability and device independence of the host to support new devices from 

different manufacturers. 

   One of these classes is the USB Device Class Definition for Video Devices, or USB Video 

Class (UVC) which is a specification that defines video streaming functionality on the 

Universal Serial Bus. It allows for interconnectivity of webcams to computers without the 

need for proprietary device drivers. Microsoft Windows XP SP2, Linux and Mac OS X have 

UVC support built in and do not require extra device drivers, although they are often 

installed to add additional features, that is much like nearly all mass storage devices (USB 

flash disks, external SATA disk enclosures,) can be managed by a single driver because they 

conform to the USB Mass Storage specification; UVC compliant peripherals only need a 

generic driver. [3] 

   The UVC specification covers webcams, digital camcorders, analog video converters, 

analog and digital television tuners, and still-image cameras that support video streaming for 

both video input and output. 

http://en.wikipedia.org/wiki/Windows_XP
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Mac_OS_X


   The UVC drivers use the Video4Linux 2 (V4L2) API in Linux which is a video capture 

application programming interface for Linux, supporting many USB webcams, TV tuners, and 

other devices. V4L2 is closely integrated with the Linux kernel. V4L2 has two important 

parts; the video capture interface which grabs video data from a tuner or camera device; 

and the video output interface allow applications to drive peripherals which can provide 

video images outside of the computer [4].  

   V4L2 in the drivers (in the kernel space) exposes its functionality to the user-space 

applications using ioctl() interface to perform the various video functions (whether it’s a 

capture device or output device), this gave the developers much flexibility to write their 

applications; among the important ioctl are vidioc_querycap to check for driver capabilities, 

vidioc_reqbufs to establish a set of buffers, vidioc_querybuf to query the status of a buffer, 

mmap to map buffers into its address space, vidioc_qbuf to enqueue a buffer which means 

putting it into the driver's incoming queue, and vidioc_dqbuf to dequeue a filled (capturing) 

or displayed (output) buffer from the driver's outgoing queue.[5] 

BeagleBoard: 

   In order to remove the barriers from embedded Linux-based development a small group of 

volunteers (some of them from Texas Instruments) made BeagleBoard which is a small, 

(relatively) low-cost, durable (hard to ‘brick’) ARM-based development platform that couples 

an open source hardware design that anyone can look at with open source software. [2] 

   BeagleBoard is based upon the ARM Cortex-A8 System-on-Chip (SoC) processor. This 

means that BeagleBoard uses software compiled using the ARM Instruction Set Architecture 

(‘ARM arch’), and Linux has been available for the ARM architecture for many years now 

   BeagleBoard Xm version has a high-speed USB 2.0 OTG port with four-port high-speed USB 

2.0 hub, which make it very suitable for the USB video switch application. 

 

  



Development Environment 

   In order to overcome many of the development challenges we chose to use TI Sitara Linux 
SDK for BeagleBoard Xm, which provides an easy set up and quick out-of-box experience, the 
SDK is also free, and does not require any run-time royalties to Texas Instruments, the SDK 
contains the Linux kernel for BeagleBoard Xm, which make it easy to modify and compile the 
kernel and then to deploy it to the BeagleBoard, it also includes a special IDE called Code 
Composer Studio™ IDE v5 for Linux development, which make it easy to write user-space 
applications, to compile them, to copy the result to BeagleBoard using drag and drop and to 
debug them. [6] 

 

System Components 

   The basic system components are the BeagleBoard Xm running the application connected 

to PC using a USB cable from the USB OTG port in the BeagleBoard, and four Microsoft 

LifeCam HD-5000 USB cameras connected to the host USB port in the BeagleBoard, when 

connected to the PC, the BeagleBoard is recognized as a single USB Camera of a special type, 

and could be used in different applications like Skype, the user space application talks with 

the two drivers; the USB gadget driver (to send the video to the PC) and the USB camera 

driver (to receive video from the USB cameras) using ioctl system calls, the two drivers are 

kernel modules that should be loaded before running the user space application, the UVC 

webcam gadget kernel driver is located under drivers/usb/gadget directory and combilable 

as g_webcam.ko kernel module. 

 

  



The Application 

   The two USB drivers (Gadget and device drivers) in the kernel space expose their 

functionality to user space using ioctl system calls, so video application in the user space 

(whether it’s for capturing or for outputting) will do several ioctl to the driver in order to 

perform any V4L2 functionality, in our case the same user space application will do both 

capturing and outputting functions at the same time, where it will be capturing images from 

the USB cameras connected to BeagleBoard using the device driver, and it will be outputting 

combined images. 

   The application will do a basic setup which will allocate and map the video buffers in the 

drivers to the user space, and then it will start an infinite loop that includes taking images 

from the video buffers of the four USB cameras driver and combine them, then outputting 

the combined image to the video buffer of the gadget driver, the following diagram shows 

the setup process in both user space and kernel space:  

 

   The setup process starts by enumerating the available inputs (Camera driver side) and 

outputs (Gadget driver side) and choose between them, then it has to come to an 

agreement with the driver on an actual video format supported by the hardware, the V4L2 

API describes image formats using a specific structure that contains the image width, height, 

pixelformat, bytesperline, interlacing field and colorspace, which all together describe a 

buffer of video data in a reasonably complete manner, the first step is to query the 



supported formats using the VIDIOC_ENUM_FMT ioctl, then when the application wants to 

change the hardware's format for real, it could do a VIDIOC_S_FMT call, where the driver 

should first ensure that the hardware is idle before changing that format, in our case and for 

simplicity we have used YUV uncompressed video format, with 720p frame resolution in the 

UVC gadget driver side, and to align the USB cameras we have used the same YUV video 

format with 360p frame resolution to be able to combine all the four images in one image. 

   Then it should check for driver capabilities (using vidioc_querycap call). Once a streaming 

application has performed its basic setup, it will turn to the task of organizing its I/O buffers. 

the first step is to establish a set of buffers (using vidioc_reqbufs call), V4L2 framework 

supports a number of IO methods and to achieve zero-memcpy of video frames as they pass 

from V4L2 video-capture domain to UVC video-output domain, it is important to select 

appropriate IO methods for working on videobuffers, normally the supported IO methods 

are IO_METHOD_USERPTR and IO_METHOD_MMAP, in the case of Memory-mapped buffers 

the application will typically step through each allocated buffer (using vidioc_querybuf call) 

and map it into its address space (using mmap call)  

   Once finished establishing the buffers and mapping them, and before the application can 

start streaming I/O, it must put at least one buffer into the driver's incoming queue (this is 

called enqueuing a buffer using vidioc_qbuf call); for an output device, those buffers should 

also be filled with valid frame data. 

   Then there is the matter of telling the device to transfer image data to (or from) the user-

space buffer. This buffer will not be contiguous in physical memory - it will, instead, be 

broken up into a large number of separate 4096-byte pages (on most architectures). If your 

device transfers images in smaller pieces (a USB camera, for example), direct DMA to user 

space may be easier to set up. 

  The only remaining step is to actually tell the device to start performing streaming I/O. The 

Video4Linux2 driver method for this task is vidioc_streamon, the call to vidioc_streamon() 

should start the device after checking that type makes sense. The driver can, if need be, 

require that a certain number of buffers be in the incoming queue before streaming can be 

started. 

 

 

    

  



   Once setup process is finished and streaming I/O starts, the systems goes into an infinite 

loop illustrated in the following diagram: 

 

   In the Camera driver side an empty buffer is available in the incoming queue (by the use of 

a VIDIOC_QBUF ioctl) the driver will grab it and have the USB camera perform the requested 

I/O transfer (capture the image), and then move the buffer to the outgoing queue. 

Eventually the application will want to claim buffers in the outgoing queue, returning them 

to the user-space state by using VIDIOC_DQBUF ioctl, so the driver will remove the first 

buffer from the outgoing queue, and return it to the user space, normally, if the outgoing 

queue is empty, this call should block until a buffer becomes available. V4L2 drivers are 

expected to handle non-blocking I/O, though, so if the video device has been opened with 

O_NONBLOCK, the driver should return -EAGAIN in the empty-queue case.  

   The user-space application will take the images from the four cameras and combine them 

in a single image and make it ready to be transferred to the UVC gadget side (to the PC). 

   So in the UVC webcam gadget side, the user-space application will fill an empty buffer 

(that was requested from the gadget driver outgoing queue using VIDIOC_DQBUF ioctl) with 

the previous combined image, and then the user-space application will send it to the UVC 

gadget driver incoming queue using VIDIOC_QBUF ioctl, the driver will grab the filled buffer 

from its incoming queue, have the UVC device perform the requested I/O transfer (to 

actually output the image through the USB cable to the PC), and then move the empty 

buffer to the outgoing queue to be used again. 

   When the application is done it should generate a call to vidioc_streamoff(), which must 

stop the device. The driver should also remove all buffers from both the incoming and 

outgoing queues, leaving them all in the user-space state. 

 



Implementation Challenges  

   The most challenging part of embedded Linux development is choosing the Linux kernel 

version and choosing development environment and tools, we need a specific kernel version 

that contains the latest UVC drivers (gadget and device drivers) and also customized to work 

on BeagleBoard, it took a long time to try different kernel version (trying to compile, upload, 

and test them). For the development environment we wanted to have an easy way to 

modify the kernel/user space code, also to compile and test it on BeagleBoard, and 

especially we wanted an easy way for debugging as it is a very important part of the 

development in this area. And eventually we found the best development environment was 

TI Sitara SDK which includes the latest kernel source that contains the latest UVC drivers. 

   Another challenging issue was to make the UVC gadget driver actually working on 

BeagleBoard, because it’s a newly developed driver and area, and to make it actually work 

on BeagleBoard required a lot of testing and debugging effort, one of the problems that we 

found is that Direct Memory Access (DMA) is not working correctly in BeagleBoard, then we 

discovered that it’s a known issue, so to make the UVC driver working we have to disable the 

DMA in BeagleBoard kernel configurations. 

 

  



Conclusion 

   In this paper we provided the implementation details of a low cost USB video switch built 

using BeagleBoard Xm, combining the images of four USB cameras and using the new USB 

webcam gadget driver in Linux, the implementation provides a low-cost, convenient, and 

simple solution to combine video of high definition USB cameras. In the future this 

implementation could be expanded to include switching for voice as well, and eventually it 

could be evolved into a full video conferencing solution. 

References 

[1] Luff, John: "Production switchers". Broadcast Engineering, November 1, 2002. Retrieved 

online on 7/3/2013 from http://broadcastengineering.com/products/production-switchers-1 

[2] Masters, Jon: “An introduction to Embedded Linux, BeagleBoard & its Linux kernel port”, 

Linux User & Developer. Retrieved online on 7/3/2013 from 

http://www.linuxuser.co.uk/features/an-introduction-to-embedded-linux-beagleboard-its-

linux-kernel-port/1 

[3] Pinchart, Laurent: “Linux UVC driver and tools”. Retrieved online on 7/3/2013 from 

http://www.ideasonboard.org/uvc/ 

[4] Bill Dirks, Michael H. Schimek, Hans Verkuil, Martin Rubli, Andy Walls, Mauro Carvalho 

Chehab: “Video for Linux Two API Specification”. Retrieved online on 7/3/2013 from 

http://www.linuxtv.org/downloads/legacy/video4linux/API/V4L2_API/spec-single/v4l2.html 

[5] The Video4Linux2 API: an introduction, retrieved online on 7/3/2013 from 

http://lwn.net/Articles/203924/ 

[6] Linux EZ Software Development Kit (EZSDK) for Sitara™ ARM® Processors. Retrieved 
online on 7/3/2013 from http://www.ti.com/tool/linuxezsdk-sitara 

 

http://broadcastengineering.com/products/production-switchers-1
http://www.linuxuser.co.uk/features/an-introduction-to-embedded-linux-beagleboard-its-linux-kernel-port/1
http://www.linuxuser.co.uk/features/an-introduction-to-embedded-linux-beagleboard-its-linux-kernel-port/1
http://www.ideasonboard.org/uvc/
http://www.linuxtv.org/downloads/legacy/video4linux/API/V4L2_API/spec-single/v4l2.html
http://lwn.net/Articles/203924/
http://www.ti.com/tool/linuxezsdk-sitara

